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Abstract

It is shown that an adaptive system whose regressor is formed by tap delay-line (TDL)
filtering ,of a multitone sinusoidal signal is representable aa a parallel connection of an
linear time-invaritmt  (LTI)  block and a linear time-varying (LTV) block. A norm-bound
(induced 2-norm) is computed explicitly on the LTV block and is shown to decrease as N-l
where N is the number of taps. Hence it follows that the adaptive system becomes LTI
in the limit as the number of taps goes to infinity. More generally, in the case of finite N,
the model can be systematically analyzed using modern robust ccintrol  methods applicable
to LTI systems with norm-bounded LTV perturbations. This analysis puts Glover’s 1977
results into a modern robust control setting by providing a valid representation of the
adaptive system for any “finite” number of taps, and by exposing the precise nature of
mnvergence to an LTI system aa the number of taps becomes large.
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1 INTRODUCTION

In 1977, Glover  [3] [10] established an important result that an adaptive feedforward con-
troller whose regressor is formed by tap delay-line (TDL) filtering of a multitone sinusoidal
signal can be written as the parallel connection of a linear time-invariant (LTI) and linear
time-varying (LTV) subsystem. Glover  then makes a heuristic argument that for a large
number of taps IV the LTI subsystem will dominate the LTV subsystem, This provides a
useful approximation because the LTI subsystem ha the transfer function of a resonance
filter which forms a frequency notch when applied in closed-loop. This provides an impor-
tant alternative interpretation of the adaptive notching effect associated with the adaptive
controller. For example, the LTI interpretation provides estimates of the transients, the
depth of the frequency notches, the closed-loop pole locations, etc. all of which are not
available from using standard Lyapunov”  and Hyperstability  methods alone [6].

Rigorously speaking, however, Glover’s LTI analysis is only applicable in the limiting
case of an infinite number of taps N = w since it ignores the contribution of the LTV
subsystem for any finite number of taps, and does not provide any characterization of
the convergence properties as the number of taps increases. Hence, for the realistic case
of a finite number of taps, the precise interpretation of Glover’s results is unclear. The
present paper overcomes these difficulties by putting the problem into a modern robust
control setting. Specifically, a norm-bound (the induced 2-norm) is established on the LTV
subsystem which is shown to converge to zero at a particular rate as a function of the
number of taps, the adaptation gain, the number of tones, and the tone spacing. With
this representation, for any finite N, the adaptive system can be rigorously analyzed using
robust control methods applicable to LTI systems with norm-bounded LTV perturbations.
Furthermore, the choice of N ca be determined from precise Ifm conditions rather than
the heuristic “rules of thumb” given in Glover’s original paper,

The main results of this paper are taken from a recent JPL internal document [1],

2 BACKGROUND

2.1 Adaptive Systems with Harmonic Regressors

The configuration to be studied is shown in Figure 2.1. An estimate @ of some signal y is
to be constructed MI a linear combination of the elements of a regressor vector z(i) c RN,
i.e.,

Estimated Signal
~ = w(t)  Tz(t) (2.1)

where w(t) 6 RN is a parameter vector which is tuned in real-time using the adaptation
algorithm,
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Adaptation Algorithm
w = @’(p)[Z(t)e(t)] (2.2)

Here, the notation I’(p)  [,] is used to denote the multivariable  LTI transfer function I’(s)  “ 1
where I’(s) is any LTI transfer function in the Laplace  s operator (the differential operator
p will replace the Laplace  operator s in all time-domain filtering expressions); the term
e(t) c R1 is an error signal; p > 0 is an adaptation gain; and the signal 5 is obtained by
filtering the regressor x through any stable filter F(p), i.e.,

Regressor Filtering
i = F(p)[z] (2.3)

The notation I’(P) [.] denotes the multivariable  LTI transfer function F(s) “ I with S1S0
filter F(s),  acting on the indicated vector time domain signal.

For the purposes of this paper, it will be assumed that the regrasor  z can be written  M
a linear combination of m distinct sinusoidal components {~~},~1, O < UI < LIJZ  < . . . < Urn.
Equivalently, it is assumed that there exists a matrix X E RNx2m such that,

Harmonic Regreuor
x = xc(t) (2.4)

c(t) = [sin(wlt),  Cos(wlt),  . . . . sin(w~t), cos(umt)]~  E R2~ (2.5)

The following definition will be useful.

DEFINITION 2.1 The matrix XTX b dejined as the confidence matrix associated
with the harmonic regressor x in (~.~). ■

The name “confluence matrix” has been chosen to reflect the fact that for overparametrized
regressors x c RN, N > 2rn),  the N signal channels of the regressor are effectively
combined into a smaller number of 2m channels by properties of this matrix. The confluence
matrix will play an important role in the analysis which follows.

Equations (2.1)-(2.5) taken together will be referred to as a harmonic adaptive system.
Collectively, these equations define an important open-loop mapping from the error signal
e to the estimated output j, Because of its importance, this mapping will be denoted by
the special character 7-(, i.e.,

~ = ?i[e]

The special structure of M is depicted in Figure 2.1.

(2.6)

REMARK 2.1 The definition of I’(s) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I’(s) = 1/s), the gradient algorithm with leakage
(i.e., r(9) = l/(s+o); u 2 O), proportional-plus-integral adaptation (i.e., I’(s) = kp+ ki/9)j
or arbitrary linear adaptation algorithms of the designer’s choosing. Adaptation laws which
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Figure 2.1: LTV operator j = ?f[e] for adaptive system with harmonic regressor z, adap-
tation law r(s),  and regressor filter F(s)

are nonlinear or normalized (e.g., divided by the norm of the regressor), are not considered
here since they do not have m equivalent LTI representation I’(p). ■

REMARK 2.2 The use of the regressor filter X’(s) is (2.3) allows the unified treatment
of many important adaptation algorithms including the well-known Filtered-X algorithm
from the signal processing literature [8][5][2][9], and the Augmented Error algorithm of
Monopoli  [4]. Since z is comprised purely of sinusoidal components and F in (2.3) is,
stable, all subsequent analysis will smume that the filter output 5 has reached a steady-
state condition. ■

The following result taken from [1] will be needed which gives  necessary and sufficient
conditions for the operator M to be LTI.

THEOREM 2.1 (L’JX Representation Theorem) Let the regressor z(t) in the adap-
tive system (%1)-(%9) be given by the general multitone harmonic expression (24)(%5)
where the frequencies {u~}& am di~tinct, nonzero~  and lF(]~i)l >0 for all i.

Then,

(i) The mapping W from e to ~ is ezactly representable as the linear time-invariant
operator,

u: $ = Z(p)e (2.7)

if and only if the matriz  X in (0??.4) satisjies  the following X- Orthogonality  (XO) condition,

X- Orthogonality  (XO) Condition:
XTX = D2 (2.8)
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where, di

2 z O,i = 1 ,...,  m are scalars  and 12X2 ~ R2X2 i~

(ii) P(s) in ($.7) is given in closed-form a~, .

E R2mx2m

e matTiz  identity.

(2,9)

(2.10)

Hi(s) =
%%’-~~’)+r(’+~”’))  +w(r(’-’)’r(’+’ui))))  ‘21’)

FR(i) ~ Re(F’(jui)); F“(i) ~ Im(F(j~i)) (2.12)

■

Simply stated, the XO condition in Theorem 2.1 implies that a harmonic adaptive
system is LTI if and only if is its confluence matrix (defined in 3.1) is pairwise  diagonal.

The following result taken from [1] shows that in the general case where the XO condition
is not satisfied, the mapping ‘H can always be decomposed into a paTa/lel  connection of an
LTI subsystem and an LTV perturbation.

THEOREM 2.2 (LTI/LTV Decomposition) Consider the adaptive system (2.1)-(2,$)
with harmonic Tegressor  (224)(%5). Then,

(i) In general the mapping E from e to ~ can be ~zpressed  as the parallel connection of an
LTI block ~(s), and an LTV perturbation block A,

@ = 7T(p)e  + A[e] (2.13)

~~di 2 . Hi(s)
i=l

(2.14)

pc(t)~A17(p)[7c(t)e] (2.15)

A&#T#–D2 (2.16)

F ~ blockdiag{Fi)  G R2mx2m (2.17)
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Fi k
[ 1

F“(z) J’1(~) ~ ~2x2.

–F~(z) FR(Z)
1 for 1 = 1,...,  rn (2.18)

F~(i)  ~ Re(F(j~i));  F1(z) ~ Im(~(jui)) (2,19)

and where Hi(s) i.J m defined in (.2,11) of Theorem l?. 1, and D2 i~ cho~en  (non-uniquely)
w any matrix of the 2 x 2 block-diagonal form ($.9).

(ii) If the adaptation law I’(s) is stable with infinity norm [ll’(s)ll@,  then the gain of the
LTV perturbation can be bounded from above a~,

where 11 “ [ 12i denotes the induced L2 -norm of the indicated operator.

REMARK 2.3 The LTI/LTV decomposition in Theorem 2.2 is important for adaptive
systems which do not exactly satisfy the XO condition. In this csse, the adaptive system
can be analyzed using modern robust control methods (i.e., small gain theorem) making
use of the analytic expression (2.14) for the LTI block ~(s) and the norm bound (2.20) on
the time-varying perturbation block ~ [7][11]. ■

REMARK 2.4 The need for 111’(s)l Iw to exist in Theorem 2.2 (part ii) requires that the
adaptive law use some type of “leakage” (cf., Iormnou  and Kokotovic [?]). The possibility
of less conservative norm-bound remains aa an open issue. 9

3 TAP DELAY-LINE (TDL) BASIS

3.1 Single Tone Case

In” 1977, Glover  [3] made the interesting discovery that an LTI system arises if the regressor
z of an adaptive f~dforward  system is defined by filtering a sinusoid through a long tap
delay line (TDL).  Glover’s result can be understood simply in terms of the XO condition
of Theorem 2.1. .

Let the regressor z(t) = [q(t),..., x~(t)]T G RN be defined by filtering a ~iw~e  frequency
WI > 0 ,

~(t) = all sin(w~t) + a~2 cos(qt) (3.1)

through a TDL with N taps and tap delay 2!’, i.e.,

zt(t) = e-t~-llpT~(t), k’ = 1, . . ..N (3.2)

where the term e-(t-l)PT in the differential operator p represents a delay of (1 – 1)2”  time
units. If z(t) is written in the form z = Xc(t),  then it csm be shown (i.e., set z = 1 and
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m = 1 in Theorem A.1 of Appendix A), that the confluence matrix

bN(@)A:&IAIX T X = :cr; “ 12)(2 + .

sin(N
cos(N

& sin Nv
BN(v) =

sin v
The first term of (3.3) (a pairwise diagonal matrix), increases as N,

is given by,

(3.3)

(3.4)

– l)uIT
– l)wIT 1 (3.5)

(3.6)

while the second term. ..-
remains bounded, Normalizing the adaptation gain to p = F/N for some F >0 (to prevent

~ unbounded feedforwaxd  gain), and taking the limit aa N + w gives,

(3.7)

Since the XO condition Theorem 2.1 is satisfied asymptotically aa N gets large, the system
becomes asymptotically LTI and is given as,

where Hi(s) is given by (2.11)(2.12), and where a? = a~l + a~2. Restricting the choice of
filter to F(s) = 1 in (3.8), and the choice of adaptation algorithm to the gradient algorithm
(i.e., I’(s) = 1/s) , gives precisely Glover’s result (proved originally in the discrete-time
case [3] ). This result is recovered here aa a special case of Theorem 2.1.

3.2 Multi-Tone Case

Rigorously speaking, Glover’s LTI analysis of TDL regressors is only applicable in the
limiting case when N = W, i.e., i t ignores the contribution of the LTV subsystem for
finite N, and does not provide any characterization of the convergence properties aa N
increases. In contrzwt,  a more complete solution can be found by putting Glover’s results
into a modern robust control setting. This will be done in the present section by applying
the LTI/LTV decomposition of Theorem 2.2 to the TDL regremor case. First, a definition
will be useful.

DEFINITION 3.1 Given time delay T and ~pacing  parameter O < E < 7r/2, a Bounded
Tone Set Q(m,  T, g) is dejined as any Jet of m frequencies {~i}~l,  ~uch that,

fi(m, 2’, U) ~
{

o<g<7r/2;
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O<Y<U~T<n–P  foralli=l,...,  m ;

(3.9)

m

Simply stated, a Bounded Tone Set is a set of frequencies {~i}~l  which are bounded
away from O, m/T  and each other. The definition is not very restrictive since any signal
comprised of a finite number of distinct sinusoids lies in a Bounded Tone Set when T
is chosen sufficiently small (i.e., to ensure Nyquist sampling of its highest component).
Definition 3.1 is conveniently used to define the minimum spacing parameter L which will
play an essential role in many subsequent results.

The main result of the paper follows.

THEOREM 3.1 (Tap Delay-Line Basis) Consider the adaptive system ($. 1)-(2.9) with
harmonic regressor  (t.4)(k? 5), and inpuijoutput  mapping ?i in (t. 6). Let* the component
of the regressor x = [zI, . . . . ZN]T ~ RN be defined by filtering a signal {(t) G R’ through a
tap delay line with N taps and tap delay T, t. e.,

xt=e ‘[-’T(, ./?= 1, . . ..N (3.10)

where the measured signal ( i~ given by the following sum of m sinusoids,

m
((t) = ~CZi Sill((.d;t + #i); C2i >0 (3.11)

i=l

and frequencie~  {~i}~l  lie in a bounded tone Jet Q(m,  T,u).

Then,

(i) The regres~or  z(t) can be written in harmonic form (%4)(2.5) where  the matriz
X ~ RNxzm  satis$es,

XTX=D2+A (3.12)

-1:”
CY; .12X2 O . . . 0

D2=;  o “’. ““. : 1 c R2mx2m (3.13)
“. “. o

0 . . . 0 cl: “ I~x2

and the matriz  perturbation A ~ XTX – D2 h norm-bounded as,

(3.14)
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(ii) (LTI/LTV  Decomposition)

The mapping W from G to e can be uniquely deco-reposed into the parallel connection of
an LTI block ~(s),  and an LTV perturbation block A,

%: j = H(p)e  + A[e] (3!15)

where,

(3.16)

@] & pc(t)TAI’(p)[Fc(t)e] (3.17)

where the perturbation matTiz  A is defined in (9.12) with noTm bound (3.14), and Hi(s) h
given by (f!.11) of Theorem ,??.1.

Furthermore,  if the adaptation law I’(s) is stable  with infinity norm lll’(s)[l@,  then the
gain of the LTV perturbation can be bounded a3,

(3.18)

where I I “ 112i indicates the induced L2 -norm.

(iii) (Normalized Adaptation Gain)

By normalizing
become,

the adaptive gain to p = ~/N, the operator~  in (9.16)($.17) of (ii)

H(s) = ~~~~ . Hi(s) (3.19)
i-l

~[e] ~ $c(t)~AT’(p)[Fc(t)e] (3.20)

and the upper bound on the gain of the LTV perturbation in (9.18) becomes,

(3.21)

where lll’(s)llm h resumed to ezist.

(iv) (Asymptotic Propertie~)

If the adaptation laio ~(s)  is stable (with bounded infinity norm I Il?(s)l I@), and the
adaptation gain is normalized as p = P/N for ~ > 0 constant, then as N ~ w the
mapping ‘H becomes LTI with asymptotic transfer function,

(3.22)
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PROOF:

Proof of (i): From Theorem A, 1 the confluence matrix is given by X~X = A4 where M
is given by (A.52)-(A.55).  Hence, A = M – D2 E R2~x2~ has the symmetric block 2-by-2
structure (A.77)  used in Lemma A.5. Applying the result (A.78)  of Lemma A.5 gives,

(3.23)

(3.24)

where use has been made of property P.5 of Lemma A.4 in equation (3.23).

Proof of (ii): Results follow by applying the LTI/LTV Decomposition of Theorem 2.2
noting from (3. 13) that in the present case  di  2 = fa~.

Proof of (iii): Simply substitute p = ~/N into the LTI and LTV blocks, where ~ >0 is
a constant.

Proof of (iv): It is seen that the normalized LTI transfer function ~(s) in (3.19) remains
UrmHected  aa N increases while the normalized LTV perturbation in (3.20) goes to zero
as N increases, Hence, aa N 4 cm the mapping H becomes LTI with asymptotic transfer
function given in (3.22), as desired. ■

For convenience, the results of Theorem 3.1 are summarized in Figure 3.1. Specifically,
Figure 3.1 Part a. shows the harmonic adaptive system with TDL basis and normalized
adaptation gain ~ = P/N; Part b. shows the equivalent decomposition into an LTI block
and a norm bounded LTV perturbation block,  Note that the time-varying perturbation
block goes to zero asymptotically aa N becomes large.

REMARK 3.1 The asymptotic result (iv) of Theorem 3.1 follows essentially from the
special form of the confluence matrix X~X in (3.12) which arises in the TDL case. Specifi-
cally, in relation (3.12), the matrix D2 given by (3.13) (and hence the associated LTI block)
grow~ hnearJy  with the number of taps N, while the perturbation matrix A (and hence the
associated LTV block) remaim bounded aa N increases.

Hence, when the LTI and LTV paths are normalized by 1/N through choice of adap-
tation gain p = D/N (sa shown in Figure 3.1) and the limit is taken aa N becomes large,
the LTI part remains constant while the norm bound on the LTV part decreases aa l/N.
This indicates-that the LTV part can be made arbitrarily small by choosing N sufficiently
large, while the LTI part remains untiected. ■

REMARK 3.2 Interestingly, the bound on the LTV perturbation A in (3.21) depends
on the boundedness of the tone-set through the minimum spacing pari,rneter  y >0 defined
in Definition 3.1. Specifically, a smaller u requires a larger N to justify the asymptotic
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decomposition of ?-l for adaptive system with TDL bssis
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approximation to the same degree. This relationship precisely characterizes the effect of
tone spacing on the convergence of the LTV subsystem, and settles a long standing question
on the role of tone spacing in determining the asymptotic properties of adaptive systems
with long tap delay lines. It is worth noting that these results are consistent with the
heuristic discussions of tone spacing found Glover’s original paper [3] (cf., Section IV, pp.
488).

Also interesting is the appearance of m2 in the numerator of the norm bound (3.21).
This indicates that if the number of tones m in the regressor is increased, one must increase
N sa the square  of m to justify the asymptotic approximation to the same degree. This
dependence on the tone count also appears to be new. w

4 C O N C L U S I O N S

It has been shown that adaptive systems whose regressors are formed by filtering multitone
sinusoidal signals through tap delay-lines satisfy the XO condition (and hence have LTI
representations) in the limit as the number of taps becomes infinite. This result is of
significant practical importance since tap delay lines, FIR filter representations, etc., are
mmmonly  used in many adaptive sigmd  processing and communications applications,

For the more realistic case of a finite number of taps, Theorem 3.1 extends Glover’s work
by putting the problem into a modern robust control setting. Specifically, the unwanted
time-varying terms (arising in Glover’s expansion of the adaptive operator), are character-
ized precisely in terms of a norm bounded perturbation (3.21). This permits a rigorous
treatment of the time-varying dynamics using modern robust control theory, md exposei
the exact nature of the convergence to an LTI system aa the number of taps is increased.
The norm bound (3.21) is seen to be proportional to m2/(Nu)  which clearly indicates the
size of the LTV perturbation aa a function of the number of taps N, the minimum tone
spacing parameter Y, and the number of ton- m. To the author’s knowledge, this is the
first time these dependencies have been made explicit. Using this new model, the choice
of N can be determined from precise Hm conditions rather than the heuristic “rules of
thumb” given in Glover’s original paper, and precise statements cm be made about the
stability of the system even in the presence of the LTV subsystem.
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A APPENDIX: Properties of TDL Regressors

The purpose of Appendix A is to provide the detailed structure of the confluence matrix
X~X for a tap delay-line basis (i.e., in Theorem A. I), and additional supporting results
which are needed to prove Theorem 3.1.

The following definitions will be used throughout Appendix A:

ci&[CQS>~lJiT]  ’RN; ‘i&[sin$~wp]ERN

~j g COS((iV  –  1)(W,  –  
Uj)Z’/2)

&j ~ sin((N  – 1)(U,  – ~j)~/2) .

~j ~ COS((N  –  l)(~i +  ~j)~/2)

Sij ~ sin((N  – 1)(W; + ~j)~/2)

E-[ Qj ~j.,—
— & j  ~j 1~:A[ 1

A —Qj Sij

=

.Sij Cij

( A l )

(A.2)

(A.3)

(A,4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.1O)

LEMMA A.1 Let B“(v) be dejined by (A.1O). Then, on the interval O s v s x, the
following inequality holds,

( A l l )

where,
T ( V )  ~ tin(v, 7r – v) (A.12)
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PROOF: A sinusoid sin v can be bounded below on the interval O s v s n by piecewise
linear segments as follows,

I sinvl > + min(2v,2(7r  - v)); for O S v S m (A.13)

Hence,
sin Nv

<
nlsin Nvl < m

(A.14)
sin v min(2v, 2(7r – v))  – 2 c ~(v)

LEMMA A.2 Let BIV(~) be defined by (A.1O). Then for frequencies {Ui}~l  in a bounded
tone set Q(m,  T, u), the following inequalities  holdl

(A.15)

PROOF: By properties of the Bounded Tone Set (3.9), the following inequalities can be’
shown to hold for anY ~i, ~j c ~(rn~ T} u)!

(A.20)

Here, the first inequality in (A.20)  follows by (All) of Lemma Al; the second equality
follows by definition of r in (A.12);  and the last inequality follows by properties of the
bounded tone set $l(m, T, y) in (3.9).

Proof of (A.16):

f?N((wr –– ~j)T/2) ~
z~((~i –m~j)T/2)

7r r
<

min(2q, 2m – (7r – 2u)) ‘%

(A.21)

(A,22)

(A.23)
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Here, equation (A.21)  follows by (All); (A,22)  follows by the definition of ~(.) in (A.12)
and the fact that the function l?~(”) is even; and (A.23)  follows from (A.18).

Proof of (A.17):

B~((U~ +  Uj)T’/2) S

=

~

Here, equation (A.24)  follows by (All); (A.25)  follows by the definition of ~(.) in (A,12)
wd the fact that the function B~(”) is even; and (A.26)  follows from (A. 19). ■

LEMMA A.3 Let Ci, Si be as defined in (A. 1). Then the following identities hold,

s~sj  = i (23 - ~N ((~i –
2

~j)T/2) – Gj o 8N ((~i  + ~j)T/2)) (A.27)

Cfcj = ~ (~j “ 8N ((~i – ~j)T/2) + ~j “ 8N ((ui + ~j)T/2)) (A.28)

C~Si  = ~cj = ~ (Sij “ ~N ((~i  + ~j)T/2)  + ~j . BN ((~i  –– ~j)~/2)) (A.29)

c~sj  = s~ci  = ~ (~ij “ ~N ((Oi + Uj)~/2)  – ~j . B~ ((0,  –  Cdj)Z’/2)) (A.30)

where  %j,~ij, Sij, ~j, BN are as defined in (A. f)-(A.5),  and (A.1O).

PROOF: Use will be made of the following identity,

#N-l) v/2 .
sin(~V/z) ~ ~“(N-l)v/2 . ~N(~/2)

=
sin(v/2)

(A.31)

(A.32)

Proof of (A.27):

S~Sj = f sin(tii(l? – l)T) sin (~j(~ – 1)2’) (A.33)
t=l

IN
=

5
x ((COS Ldi — ~j)(f? _ l)T) _ ~s((~i  + ~j)(l?”- 1)2’) (A.34)
.?=1
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(A.35)

{

+ &’(~-l)(~i- ‘j) T/2~N((~i= –  Ldj)Z’/2)

— J(N-l)(t4Ji+k’j)T~~  ((Wi + Ldj)T’/2)

}

(A.36)

Here, Re(.) denotes the real part of the indicated expression. Equations (A.33)-(A.35)
follow by standard trig formulas; equation (A.36)  follows by using identity (A.32);  and
(A.37)  follows by the definition of Sij and ~j in (A.2)-(A.5).

Proof of (A.28):

C~Cj  =

,=

+

~COS(Wi(4 -  1)2’) ms(~j(~  -  ‘l)T) (A.38)
t=l

IN

x ((
)(

Ldi –  Ldj)(l  –  1)2!’ +  CQs (~i +  ~j)(~  –  l)T
)

(A.39)
% ~=1 ‘s

{
~Re f &(~i-wj)(t- 1)T + ~“(wi+wj)(t-l)T

}
(A.40)

!=1

{
~Re ej(N-l)(wi-uj)T/2~N((~i –  uj)~/2) (A.41)

#(N-l)(tJi+w~)T~N((U~  + uj)~/2)
}

(A.42)

~ (~j~N((~i – 
~j)T/2) + ~jBN((~i + ~j)~/2)) (A.43)

Here, equations (A,38)-(A.40)  follow by standard trig formulas; equation (A.42)  follows by
using identity (A.32);  and (A.43) follows by the definition of ~j and ~j in (A.2)-(A.5).

Proof of (A.29):

Cfsi = #Cj = ~ sin (wi(t – ) (
I) Z_’ CQS LJj(l  – 1)~

!= 1 )
(A.44)

= ~ fSiIl((LOi +  Uj)(l -  1)~) +  sin((~i  -  ~j)(~  -  l)T) (A.45)
kl
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(A,46)

=
{

~Im eJ(N-l)(wi+wJ)T/2~~((@i  + Ldj)!!!’/2)

+ &’(N-l)(wi-wJ)T~~((Ui  – Wj)Z’/2)
}

(A,47)

1 (z 9ijB~((Ldi + Uj)’T/2) + ~jB~((Ldi=— –  
LOj)T’/2?)) (A.48)

Here, Ire(.) denotes the imaginary part of the indicated expression. Equations (A.44)-
(A.46)  follow by standard trig formulsx;  equation (A.47)  follows by using identity (A.32);

‘ and (A.48)  follows by the definition of sij ~d ~j in (A.2)-(A.5).

Proof of (A.30):  This relation follows by reversing the roles of i and j in the proof of (A.29),
making use of the antisymmetric  property of sin(–d) = — sin(d) and symmetric property
of l?~(-v)  = z?~(v). ■

THEOREM A.1 (Confluence Matrix for a TDL) Let the components of the regres-
sor z = [Z1, . . ..ZN ]T G RN be defined by filtefing  a signal ~(t) G Rl through a tap delay line
with N taps and tap delay T, i.e.,

z,= e-(’-l)’T (, t= 1,...,  N (A.49)’

where the measured signal ~ is given by the following sum of m di~tinct  sinusoids,

Then, the regressor  z(t) is of the harmonic form,

x = xc( t ) (A.51)

where X E RN x 2 m, c(t) b defined in (2.5), and its confluence matriz is given by,

‘TX=[2 :: IIR2”X2”

Mij E R2X2; i = 1,...,  m; j = 1,...,  m

(A.52)

(A.53)
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M i j  = ~At (BN ((~;  – ~j)T/2) J&j + ~~ ((~i  + ~j)T/2) ~j) Aj (A.54)

M i i  =  ~~~ . IZXZ  + ~BN(~iT)A~&iAi (A.55)

where definitions (A. 1)-(A. 10) have been used.

PROOF: Using standard trigonometric identities, the lth element z~ of the delayed
regressor (A.49)  can be expanded as,

q(t) = ~-(~-w (( =  
~ail sin Ldi(t - ( 4 – 1)7’)) + ai2 ms(~i(t  – (t – l) T))(A.56)

i=l

(ai2 sin(~i(t – 1)2’) sin~it  + ~s(~i(t  – l)T)  KM wit
)

(A,57)

Using (A.57),  the full regressor z(t) can be decomposed in terms of the vectors Si and Ci
in (Al) aa follows,

z(t) =
[
alzSl + all G, —allll  + alxCl, ...j%zSrn + a~lC~j 1–a~lSrn + arn2Crn  c(t) (A.58)

Equivalently, (in matrix notation),

z(t) = Qdc(t) (A.59)

where,
Q ~ [SI, HI,..., Sm, cm] c R~”2’” (A.60)

[ 1AIOO

AA () ‘o. O E R2~x2m (A.61)

OOA~

and Ai G R2XZ is defined as in (A.9).  Hence, by inspection of (A.51)  and (A.59),  the matrix
X is given as,.

~=QA (A.62)

Squaring up X and using (A,62)  gives the confluence matrix,

XTX = ATQTQA  & M (A.63)
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From the structure of (A.60)-(A.62),  the components blocks of A4 can be computed aa,

(A.64)

Result (A.54)  follows by substituting the identities (A,27)-(A.30)  of Lemma A.3 into (A.64)
and simplifying using expressions (A.1)-(A.1O). Result (A.55)  follows by setting i = j i n
result (A.54)  and simplifying by using the relation B~(0)  = N. ■

LEMMA A.4 Define,

A ~ M -D’= { Ai j} G R2mx2”’ (A.65)

A ii ~ Mii – ~~~ “ 12 X 2  ~ R2 X 2 (A,66)

A i j
& &fij ~ Rzxz (A,67)

where D2 b defined by in ($.19) of Theorem J. 1, and the matriz  M and its submatrices
MijY Mii are de$ned by (A.5.2)(A.55)  of Theorem Al.

Let the quantities  ~i, AiY -1)R ~ &j be defined by (A. 6)-(A.9), and assume that all frequen-
cies {~i}~l are drawn j?om a bounded tone set i.e., fl(m, T, K) defined in Definition $.1.
Then the following properties hold,

PI.  &( A,) =@ ,

P 2 0  @(l&j) = 1

P 3 .  F(mj)  = 1

P4. ~(Aii) < ~

P5. ~(Aij)  < ~

PROOF: It follows
related as

from the definition of ~ in (A.8),  that the variables ail, ai2, ~i are

cr~ = a~l + a~2 (A.68)

For the proof,.extensive_  use will be made of the definitions (A.2)-(A, 10). Continuing,



Proof of P3:

[ 1~(~j) = 
Aiaz(R~Rij)  = AA6. (C~j + Sfj) “ 1 = 1 (A.71)

Proof of P4:
N

~(Aii)  = =(&fii _ ~O!i “ lQ)(Q)  =  5
(

~BN(~iT)A~&iAi
)

(A.72)

< ~lP~(~iT)l o E(Ai)2  < ~ (A,73)

where (A. 72) follows by (A.55)  of Theorem A. 1; equation (A. 73) follows by P3 for z = ~;
snd the lash inequality follows by Lemma A.2 and property P 1 proved above.

Proof of P5:

=(Aij) =  ~
(

~~N ((~~ –

)
~j)T/2)  A~&.jAj  + BN ((~i + ~j)~/2)  A~RjAj (A.74)

< ~B(Ai) o @(Aj)  ([BN ((~i  _ ~j)T/2)  [ . ~(&j)

+ IBN ((~i + ~j)T/2)  I o F(mj)) (A.75)

(A.76)

Here, (A.74)  follows from (A.54)  of Theorem A.1 and (A.67);  and (A.76)  follows by Lemma
A.2 and properties P 1, P2, and P3 proved above. ■

LEMMA A.5 Let X = XT ~ R2mx2m  be a symmetric matriz  partitioned into 2 x 2 blockx,
i.e.,

x=

Then,

x~~ . . . Xlm
“. . d E R2mx2m;  Xij  ● R 2 X 2 (A.77)

Xml . . . Xmm

PROOF: Let z E R2m be a vector partitioned compatibly with X, i.e., z = [z:, . . . Z~]T, ~i G
Ra. It will be useful to define the matrix rk E R2’’’X2”’ which is the block diagonal matrix
dqfined  by,

[
rk = diag X&&  . . ..x~mxkm 1 (A.79)

Consider the inequality,

(X~Zi – Xkj~j)T(X~~~  – Xkjzj) ~ O (A.80)
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Expanding (A.80)  and using symmetry X; = Xji gives upon rearranging,

%~X~X&lxi  + %~x~.xkjxj  > ‘2x~xikxkjxj (A.81)

mmm

max xTXTXx  = max ~ ~ ~ z~xikxkj  Zj
Ilzll=l IIzII=l ~=~ j=l k=~ (A.82)

(A,83)

(A.84)

(A.85)

k=l

Here, (A.82)  follows by the partitioning in (A.77);  equation (A.83)  follows from inequality
(A.81);  equation (A.84)  follows by the definition of r& in (A.79);  equation (A.85)  follows by
maximizing separately over each term in the summation; and (A.86)  follows by the blocl
diagonal structure of (A.79).  Taking the square-root of (A.86)  gives the desired relation
(A.78). ■

.

.
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